Skip to main content

Transaction Data

Adding multiple data records to the system in a single batch operation to improve efficiency and maintain consistency.


๐Ÿงฉ Overviewโ€‹

Transaction Data workflows are designed to handle the insertion or update of multiple records as a single logical unit of work. This ensures that either all changes succeed or none do, maintaining data integrity and system reliability.

Typical use cases include:

  • Batch processing of invoices, test results, or orders
  • Importing CSV/Excel data
  • Multi-table insertions (e.g., order header and items)

๐Ÿ” Key Conceptsโ€‹

TermDefinition
AtomicityAll operations within the transaction complete successfully or none do
ConsistencyEnsures database remains in a valid state before and after execution
IsolationConcurrent transactions don't interfere with each other
DurabilityOnce committed, changes are permanent even if system fails

๐Ÿ“ฅ Example: Batch Insert (SQL)โ€‹

START TRANSACTION;

INSERT INTO patients (name, dob) VALUES ('Alice', '1992-01-01');
INSERT INTO patients (name, dob) VALUES ('Bob', '1985-04-03');
INSERT INTO patients (name, dob) VALUES ('Carol', '1978-09-12');

COMMIT;

๐Ÿ”„ Use ROLLBACK; instead of COMMIT; if an error occurs during processing.


๐Ÿงช Use Case: Lab Billing Entryโ€‹

When creating a lab bill, multiple test line items are recorded together with the header:

  1. Insert bill_header
  2. Insert multiple bill_items linked by bill_id
START TRANSACTION;

INSERT INTO lab_bills (patient_id, doctor_id, total_amount) VALUES (1, 3, 1500);
SET @bill_id = LAST_INSERT_ID();

INSERT INTO lab_bill_items (bill_id, test_name, amount) VALUES (@bill_id, 'Blood Sugar', 500);
INSERT INTO lab_bill_items (bill_id, test_name, amount) VALUES (@bill_id, 'Thyroid Panel', 1000);

COMMIT;

โš™๏ธ API Pattern (Node.js Example)โ€‹

const conn = await db.getConnection();
try {
await conn.beginTransaction();

const [billResult] = await conn.query("INSERT INTO lab_bills ...");
const billId = billResult.insertId;

await conn.query("INSERT INTO lab_bill_items ...", [billId, ...]);
await conn.commit();

res.json({ success: true });
} catch (err) {
await conn.rollback();
res.status(500).json({ error: "Transaction failed" });
} finally {
conn.release();
}

๐Ÿ“Š Bulk Data Uploadโ€‹

Steps:โ€‹

  1. Parse file (CSV, Excel)
  2. Validate entries
  3. Group into batches (e.g., 100 per insert)
  4. Begin transaction
  5. Insert batch
  6. Rollback on any error or commit if all succeed

๐Ÿง  Best Practicesโ€‹

  • Use transactions for grouped inserts and multi-table operations
  • Validate data before the transaction begins to avoid partial commits
  • Use batch sizes appropriate to database limits (e.g., 500โ€“1000 rows)
  • Log failed batches with reasons for review
  • For extremely large imports, consider asynchronous processing with status tracking

๐Ÿงฉ UI Integration Tipsโ€‹

  • Show progress indicators for large imports
  • Allow user to download failed entries for correction
  • Display transaction results: success count, error count, skipped

๐Ÿ›ก๏ธ Error Handling & Rollbackโ€‹

ScenarioAction
Validation failureAbort entire batch
Partial insert errorRollback transaction
Database constraint violationLog & rollback
SuccessCommit transaction

๐Ÿ“š Applications of Transaction Dataโ€‹

DomainBatch Action Example
HealthcareEntering multiple lab test results
FinanceImporting ledger entries or bulk payments
EducationUploading exam results
LogisticsUpdating multiple inventory records
HRAdding new employee batches

๐Ÿ”š Summaryโ€‹

The Transaction Data workflow ensures high integrity and performance when processing bulk records. It reduces manual effort, increases efficiency, and safeguards your database with controlled batch operations.